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CONTINUOUS MODAL CONTROL OF LINEAR MULTICOUPLED OBJECTS* 

V.A. BRUSIN and YU.M. ~KSIMOV 

A modal control method is considered in which the spectrum of the closed- 
loop system is continuously deformed in such a way that the spectrum of 
the open-loop object transforms into the desired spectrum. The algorithm 
of the continuous modal control is synthesized. The conditions for 
spectral control in the method are obtained. The approach is based on 
similar ideas to those in /l/, but a different class of controls is con- 
sidered here. Moreover, by using the appratus of Lyapunov functions, 
specified in the one-parameter family of the deformed spectrum, the 
deviation between the required spectrum and the closed-loop systemspectrum 
can be minimized in the Euclidean metric, in the case when the wanted 
spectrum cannot be obtained in the closed-loop system. 

1. Formulation of the problem. suppose we are given the linear controlled object 

s' (t) = As (t) + Bu (t), y (t) == Cx (1) (I.11 

:r E R", u E R"', I/YE R' 

where r is the state vector, u is the control vector, y is the vector of observed variables 

-4,R.C are constant matrices of suitable dimensionless, and I?" is a linear n-dimensional 
space over the real number field. We shall in future assume that the spectrum of the object 
(1.1) is simple and contains no multiple poles. We define the class of controls by 

where G is a matrix function of the scalar variable E. and a>0 is a parameter. The 

dynamic behaviour of the closed-loop system is given by the matrix 

whose spectrum is a function of the parameter CL. With CL = 0 we have the open-loop system, 

whose spectrum is denoted by A (0). As a varies, the class of linear systems is generated. 

Every element of the class (the linear system which has the spectrum .z (a) = {Pi (If). Pe (a), . -I 
pn (al}) is defined by a specific value of the parameter a. 

*Prikl.kfatem.i+fekhan.,52,6,922-928,1988 
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Given the spectrum U= {Q,Q, . . . . rln), into which we wish to transform the spectrum 

h (0). We define the Euclidean measure of the mismatch between spectra -i(a) and c as 

1’ (4 = i (Pi (4 - rli) (Pi (4 - vi)* 
i=l 

(1.4) 

(the asterisk denotes the complex conjugate). We wish to construct the matrix function G(g) 

in such a way that, for some li we have V(6) = min, V(a). In particular, we may have V(5) = 0. 

In this case, we shall say that the spectrum u can be reached from the spectrum A (0). 

2. Equations for the spectrum. Synthesis of the matrix function G(g). We 
consider the matrix A (a) whose spectrum is .A (a). Let It(a) and e*(a) be the left and 

right eigenvectors of the matrix A (a), corresponding to the eigenvalue Pi (a). Their dynamic 

behaviour when the parameter a varies is determined by the conditions of the theorem: 

Theorem 1. Let the matrix A (a) given by Eq. (1.3) be simple. Then, the variation of 

its spectrum, and of its system of right and left eigenvectors, is subject to the equations 

dp, (a)/da = 1,T (a) U (a) ek (a). pk (0) = pk" (2.1) 

de, (a)/da = F, (a) U (a) ek (a), ek (0) x eke 

dl,T (a).‘dz = ZST (a) I! (a) F, (a), 1, (0) = fk” 

U(a) = BG (a) C T RStx”. Fk (a) = 

_i&k h(a) - pi (a))-'Zi (a)E E"x" 

Zi(a)= ei(a)liT(a)qEn~" 

where T denotes transposition, pto, eKol I,” are the k-th eigenvalue, and k-th right and left 

eigenvectors of the corresponding matrix of the open-loop object A -A (0), the matrix zi (a) 
is the spectral projector of the corresponding eigenvalue pi (a), and En is the linear n- 

dimensional space over the complex number field. 

Proof. Consider the eigenvalue problem 

A (a) eR (a) r pk (a) ek (a) (2.2) 

On differentiating (2.2) with respect to a and collecting like terms, we get 

(A(a) -p,-l)-%$!-=_ (9 -FZ)e,(a) 

where 1~ Rnxn is the identity matrix. Noting that lkT (a) (A (a) - Pk (a) Z) = 0, and the 
normalization ZkT (a)ek (a) = 1, and multiplying (2.3) on the left by &T(a), we obtain the 

first equation of (2.1). 

On substituting this equation into (2.3), and noting that dA (a)/da = c’(a), we transform 

(2.3) to the form 

(pk (a) I - A (a)) de, (a)/da = (a (a) - Z,T (a) t7 (a) q. (a) Z) ek (a) (2.4) 

We know /2/ that the following spectral expansions hold for a simple matrix A (a) and 

its resolvent R, (p) = (pZ -A (a))-‘: 

A (a) = $, pk (a) 2, (a), Ra (P) = $, (P - pk (O1))‘l Zk (a) 

We write R,(p) as 

fL (P) = (P --ph. (a))-' 2, (a) + Fk (p, a) 

Fh. (p, a) = i 
i=*,i+li 

(p - pi (a))-’ Zi (a) 

The function F, (p, a) is obviously analytic in the neighbourhood of pk(*). Hence the 
matrix function Fk (p,a)(pZ -A (a)) is also analytic in the neighbourhood of pk(a). For this 
matrix function, using the spectral resolution of the matrix A (a), and the well-known 

property of projection matrices &(a)z,(a) = 6,]&(a), we obtain the value at the point P= 
Pk ta) 

Fk b)(pk (4 1 -A (4) = I - zk (4 (2.5) 
where F, (a) = Fk (pkr a). On multiplying (2.4) on the left by F, (a), and taking account of 
(2.51, we arrive at the equation 

(I - & (a)) dk (a)bt = F, (a)(U (a) - lkT (a) u (a) ek (a) 1) ek (a) (2.6) 

Consider the vector 2, (a) &,(U)/dr = ek (a)l,r (U)&(U)/dz. Since the vector eh' = el, + da, 
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is defined only up to a non-zero multiplicative constant, 
ZkreR' = Z,T (e, f de,) = 1. 

we define ek’ in such a way that 
Since ZkTe, = 1, we have 1,rcle, = 0. Hence Z, (a) de,(a)!dx = 0. 

Consider the vector 

Fk (4 (hT (Co b’(4 % (4) % (4 = 

lkT (a) U (a) e, (a) i 
i=1. i-h’ 

(ph_ (a) - pi (a))-l ei (a) li?‘ ek (4 

Since the right and left eigenvectors with indices i #k are orthogonal, we have 
liT (z)ek (a) = 0. Hence (lkT (a) U (cz) ek (a)). F, (a)e, (z) = 0. 

Using these last two results, we obtain from (2.6) the second equation of system (2.1). 
The third equation can be obtained in a similar way. 

Eq.(2.1) give the trajectories described by the eigenvalues Pk (a) in the complex 
plane as the parameter a increases from the value a = O.The trajectories start on the 
spectrum h (0) corresponding to the open-loop object. For these trajectories, the "control" 
is the matrix function G(a), which has to be chosen in such a way that the trajectories 
converge to the desired spectrum of the closed-loop system a. 

In essence, this problem amounts to d generalization of the familiar root hodograph 

method /3/, which is often used in practice. Here, however, instead of varying one chosen 
parameter of the closed-loop system, the entire matrix of the feedback is varied. Moreover, 
the aim of the control is given as a wanted spectrum. 

Let us now sythesize the matrix function G(a). For this, we calculate the total 
derivative of the positive definite function V(a) with respect to a in the light of Eqs. 
(2.1). After transformations, we obtain 

dV(z)/dz = ST (z) g (u), V(0) = V0 (2.7) 

s (CL) = h (01) A It* (a) 3 p’, 

h (4 = (CT 13 4 jj (pi (4 - rJ* (ei (4 0 4 (4) 

6 (a) = 4 (&I (a), . ., 811 (ax), 67.2, (a), . . . . gal (a), . . 
. Rm1 (a), . .1 g, I (a)) E R’“’ 

where V, is the mismatch of the spectra A (0) and 0, the vector g(a) is composed of 
the elements gij(a) of the matrix G(a), and <s/ denotes the direct (Kronecker) product of 

matrices /2/. 

On finding the vector g(a) as 

g(e) = -_ys (cc)'lls (t*.)ll', /Is (a)ll' = sT (a) s (4 (2.8) 

where Y>O is a constant, we have 

clV(a):'da = --y < 0 (2.9) 

In short, when condition (2.8) holds, V(a) is the Lyapunov function, specified on the 

spectrum of the linear system. Sy specifying the matrix function G (4 in the form (2.8), 

we can ensure that the Euclidean measure of the mismatch between the running spectrum ih (a) 
and the wanted spectrum CI of the closed-loop system decreases monotonically as the parameter 

a increases from the value a = 0. 
Notice that the approximation of the spectra A(a) and (I is not of an asmyptotic type. 

For, the solution of Eq. (2.9) is the function 

desired value U. we have V(a) = 0. 
V (a) = V (0) - ya. If 12 (a) reaches the 

Hence B = V (0)/y. Thus, if the spectrum GJ is reached 

from the spectrum 11(O), this occurs after a finite "time" 8. 

3. Cn the spectral control of the method. It follows from (2.7) and (2.8) that 

the spectrum IJ can be reached from A (0) with our modal control method if the vector 

s(c~)#O, Vu E 10,d). If, as the parameter cc increases from the value a = 0, the vector 

s (4 becomes zero at some intermediate point CC E IO, a), the modal control process breaks 

off. Then, V(fi,)# 0, so that A(&)# u. Since, as a increases, V (a) decreases monot- 

onically, i.e., v (a,)< v (a), Vu E [O, a,), then, in the context of our method, the minimum 

of the Euclidean measure of the mismatch of the running and wanted spectra is reached at the 

point a=EO. 
Cons<der the conditions under which the vector s(a) becomes zero. Let the wanted 

spectrum be chosen in such a way that the complex conjugate numbers Pi (0) and pj (0) = pi* (0) 
are associated with the complex conjugate numbers rl~ and 11 = rli*. and the real numbers ~~(0) 
with the real numbers qt. Noting our assumption that the spectrum i\(a) is simple, this 

condition is not restrictive, since obviously, when it does not hold, the spectrum A (ax)* 
which contains multiple eigenvalues, will be reached as a increases. 

In view of our choice of the spectrum o, and of the fact that, to the real numbers pk(a) 
there correspond real right and left eigenvectors, and to a pair of complex conjugate numbers 



723 

pi (a)- pj (a) = pi* (a)r a pair of complex conjugate right and left eigenvectors, we see that: 
the terms in h(a) with real ph.(a) will be real, and the terms with complex conjugate 

pi(a), pj(a) =I: pi*(a) will be complex conjugate. Hence it follows that h(a) is a real vector 

and s(a) = 2h (a). Instead of s(z), therefore; we can consider the vector J%(S), which can 

be written as 
h (a) = (I, (a) Ap* (a), Ap (a) = P (a) - 17 E E”y cf, (a) E (3.1) 

p (a) ;j~oI (pl (a), p2 (a), . ., Pn (a)), q = co1 (111, rl2, . . - 

9 n 

Here, ci is the vector consisting of the elements of the i-th row of matrix C, and 6, 
is the vector consisting of the elements of the j-th column of matrix B. 

CD(a)= 

-1T2,b, c,TZ,h, . . . ~tT.W1 
zaT2,b, caTZ,ht . . . c,TZnbl 

Q'Z,b, cLT2,b, . . . ciT&,b, 

rt=Z,b, cITZ,b, ~ . . qTZ,b, 

z2TZ,bz czTZ2b2 . . . cQTZ,& 

c,TZ,b, c,TZ,b, . . . c,TZ,,bz 

c,TZlbm. clTZ,b, . . . c1TZn4 
c2TZ,b, czTZZbm . . . C:YZ,b, 

qTZ16, qTZ,b, . . . ci=.Wn 

Let rank @ (a) = n, Va E IO,&). Then, the annihilated subspace N@(a)) of the matrix 

@ (a) consists only of the zero element Ap(a) = O /2/. Hence the vector h (a)# 0, Vu F 
10, a) and the modal control process only ends when the wanted spectrum a is reached. We 
have thus proved the following theorem for a rank criterion for spectral control of a closed- 
loop system. 

Theorem 2. Let the object (1.1) with the spectrum 11 (0) be closed by the feedback 
(1.2)s and let the wanted spectrum u of the closed-loop system be given. Then, if 

rank@(a) = n, Va E 10, 6) (3.2) 
the spectrum a can be reached from the spectrum A (0). 

If rank Q(a)< n, then non-zero Ap (a)~ iV (b, (a)) are solutions of the equation Q, (a) 
Ap* (a)= 0. Since Ap(a) = p(a)- 11, this means that, for the running spectrum ,\(a) in the 
space E",there exists a manifold H(a) such that, if n e N(a), then h(a) = 0. Hence it 
follows that, if the vector '1 belongs to the manifold H (a) for some a E lo, E), then the 
corresponding spectrum a cannot be reached from the spectrum .1(O) by the present method. 

Condition (3.2) embraces the conventional requirement that the closed-loop system be 
completely controllable and observable VaE [O,a). For, if this requirement is infringed, 
there must be a right ei(a) or left lj(a) eigenvector of the matrix A (a) such that: either 
Cei (a) = 0, or else ljT (a) B = 0 /4/. In this case, the corresponding column of the matrix 

@ (a) becomes zero, and rank@(a)< n.Condition (3.2) also includes a bound on the number m 
of inputs and 1 of outputs of the object (1.1): 

ml > n (3.3) 
where n is the dimenslonality of the object. If we have the reverse, then automatically 
rank Q(a) < ml< n. It must be said that condition (3.2) is different from the well-known 
condition /5/: n< m _t 1 - 1. Given R, condition (3.2) allows fewer inputs and outputs, which 
is important from the practical point of view. 

Furthermore, condition (3.2) is not reducible to the satisfaction of these two require- 
ments. For a completely controlled and observed system with ml> n there is a set of dis- 
tributionsofthe eigenvectors which cause all the minors of the matrix @(a) of rank n to 
vanish. 

The following example shows that this set of distributions is not empty. Let n = 4, I= 2, 
RI = 3, and let the eigenvectors be such that clTe, (a)= 0, ~~+(a) = 0. +,T~S (a)= 0, cnT+ (a) = 0, laT (a) 

hl= 0, idT (a) b,=O, iaT b* = 0, irT (a) b, = 0, I,= (a) b, = 0, 1~~ (a) b, = 0. On writing the matrix 0 (a) for 
this case, we see that rank 0 (a) = 3. 

4. Example. To illustrate our method, we will consider tbeproblemof achieving the 
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maximum degree of stability in the system “undamped harmonic oscillator plus aperiodic 
element" described by the equations 

~~~~~~~~~ Ji ~~~~~~~~~.~~~ j/W (4.1) 
/ 8, =.j 1 

where .x, (1) is the output of the aperiodic section (the observed variable), and =i (f) , .I, (1) 
are respectively the coordinate and rate of change of the harmonic oscillator (the unobserved 
variables). For the object (4.1) we take the control law 

r'*(t)= - ZO.Q(L)i =1(t) (4.2) 

Obviously, the problem of control by the dynamic controller (4.2) of a simple extension of 
the state space of object (4.1) amounts to problem (1.11, (1.2). 

Fig.1 
With a-=() in the open-loop position we have the spectrum value: h (0) = {pl (0) = -1, 1'2 (01 

12. i+ ((Ji -= -_i2, pp (0) = -20). The aim of the control is to shift the poles iii(z) and ~3:~ (aj left- 
wards parallel to the real axis of the complex plane through as large a distance as possible. 
As the wanted spectrum we take CT : 11)~ --1. I)_ = --:, I”, ‘Is ~. -5 - 12, q4 --- -20). 

Simulation of the continuous modal control process with Lyapunov frequency function (1.4) 
with ~5 : 4 and algorithm (2.8) for synthesizing the vector function I: (a) = co1 (& (e), & (e)) r 
showed that the poles Pz (a) and p3 (a) are displaced leftwards parallel to the real axis of 
the complex plane, while the real pole P1 (a) is shifted rightwards, and the real pole Pa (4 

remains virtually fixed. 
The pole displacement is shown in F'ig.1, where the curves Ra PI. and Re pBYI are plotted 

against a for different values of the coefficient y. It can be seen that the running spectrum 

n (W does not reach the wanted value u. At an intermediate point z~~[O,Ii(O)iy),whose value 
depends on y, the vector s(a) becomes zero and the control process breaks off. The spectrum 

A (0) then transforms into A (a,) = (pl (a,) = -0.45, pz (G) = -0.03 i- iz, ps &) = -0.03 - j2, pI (a,) = -30), 
which is independent of the coefficient p, 

1. 

2. 
3. 

4. 
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